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Abstract. This work reports a study of the temperature and electric field dependence of the
dielectric constant of strontium calcium titanate. The first part of the paper is focused on the analysis
of a mean-field model for the polar clusters generated by the random impurities of calcium. It is
shown that the dipolar moments within each cluster can be represented by an equivalent quantum
two-level system. General expressions for the temperature and field dependence of the Edward–
Anderson order parameter and of the electrical polarization are given. Analytical solutions are also
obtained in the limit of high temperatures and in the limit of high tunnelling frequencies.

The second part of the work reports experimental results on the temperature and electric
field dependence of the dielectric constant of strontium calcium titanate (SCT: Sr1−xCaxTiO3),
measured along the [100] pseudo-cubic direction, in samples with nominal Ca content ofx = 0.002
andx = 0.003. The analysis of the data suggests that for these low Ca concentrations quantum
fluctuations prevent the onset of either a ferroelectric or a glass phase.

1. Introduction

Strontium titanate (ST: SrTiO3) is a well known example of a quantum paraelectric [1]. At
room temperature, this material has a cubic perovskite structure (symmetry Oh) and, at about
Tc1 = 105 K, undergoes a structural antiferrodistorsive phase transition to a tetragonal phase
(symmetry D4h) [2]. This transition, associated to an anti-symmetric rotation of the oxygen
octahedra around the cubic [001] axis, is almost of the second order and is accompanied by an
under-damping of the soft mode. At lower temperatures(T < Tc1), the progressive softening
of a long wavelength polar transverse optical mode gives rise to a strong increase of the static
dielectric constant [3]. However, the onset of a long range ferroelectric order is suppressed by
quantum fluctuations and the rise of the dielectric constant saturates belowT ≈ 4 K [4].

The behaviour of ST at low temperatures appears to be remarkably complex.
Measurements of electronic paramagnetic resonance reported by Müller et al [5] suggested a
possible transition to a quantum regime(Tc2 ≈ 40 K), the so-called quantum coherent state
(QCS). Subsequent light scattering [6], neutron diffraction [6] and vibrating reed investigations
[7] seemed to provide additional evidence for such a phase transition. More recently, it has
been shown that the non-linear electric susceptibility displays an anomaly in the vicinity of
35 K , which has been interpreted as due to the transition to the a coherent quantum paraelectric
state [8]. However, the nature of this QCS and the characterization of its clear experimental
signature remain still unclear in many aspects.
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At lower temperatures, ST is extremely sensitive to small amounts of lattice impurities. It
is well known that an increase of the concentration of oxygen vacancies (SrTiO3−δ, δ > δc) may
stabilize a metallic behaviour and superconductivity [9]. Moreover, the inclusion of non-central
ions affects strongly the dielectric properties of the system and may induce ferroelectricity or
intermediate ferroelectric glass phases [10].

According to measurements of the linear dielectric constant, strontium calcium
titanate (SCT: Sr1−xCaxTiO3) seems to reveal ferroelectric ordering for a high enough Ca
concentration [11]. As in related systems with non-central impurities, such as K1−xLi xTaO3

(KTL) or KTa1−xNbxO3 (KTN), the inclusion of calcium induces a local dipolar moment very
likely related to the Ca2+–Vo (Vo: oxygen vacancy) centres replacing randomly the Ti4+–O2−

ion pairs [12–15]. Due to the high polarizability of the host lattice, these dipoles generate a local
electric field, polarize locally the lattice and induce random ferroelectric clusters [16]. The
polarization within each cluster can be reoriented between several directions dictated by the
symmetry of the system. In SCT these directions correspond to the pseudo-cubic directions
[110]c andb1̄10cc, perpendicular to the tetragonal [001] axis. Thus, for a high enough Ca
concentration, SCT could be an example of aXY , n = 2 ferroelectric system with a quartic
anisotropy [11].

The stabilization of a long or a short range order in SCT is determined by the competition
between the constant sign and the variable sign components of the random fields. In fact,
even in a disordered system, local fields of a constant sign may arise from a ferro interaction
between the polarized clusters, possibly enhanced by the soft lattice phonons. In incipient
ferroelectrics with non-central ions like SCT, a ferroelectric phase and dipolar glass have been
observed forx > xc andx < xc respectively,xc being a critical concentration of non-central
ions [11].

For low calcium concentrations, the glass phase in SCT may present some similarities
with other phases found in disordered systems like spin or orientational glasses. The question
whether these systems present or not a thermodynamic transition to a glass phase is still
controversial [17, 18]. In fact, while some dynamical properties, like dielectric dispersion,
can be described by phenomenological models assuming just a progressive freezing of the
dipolar moments of the super-paraelectric clusters nearTf , some static properties seems to
agree with mean-field predictions, which state the existence of a true transition to the glass
state.

If the freezing temperatureTf corresponds to the thermodynamic transition temperature
to the glass phase, then the associated critical behaviour is to be linked to the divergence of
the non-linear susceptibility. This prediction is related to the nature of the order parameter
involved, which in the paraelectric region may be expressed by the Edwards–Anderson order
parameterq(T ,E) [19]:

q(T ,E) = 1

N

∑
i

[〈pi〉2]av.

In this equation,N represents the density of polar clusters,pi the dipolar moment of theith
cluster, and the brackets〈 〉 and [ ] stand respectively for thermal and spatial averages.

The field conjugated toq corresponds to the square of the width of the internal electric
field distribution〈E〉2. Thus, the order parameter susceptibility∂q/∂〈E〉2 diverges atTf as
the second derivative of the conventional electrical susceptibility. These ideas point out a (in
principle) straightforward method for detecting the glass phase transition, by means of the
study of the temperature dependence of the non-linear susceptibility in the paraelectric region.
Note that by being applied well aboveTf this method avoids the difficulties related to the
non-ergodic response of the system in the vicinity and belowTf .
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The non-linear dielectric constant in SCT has been previously studied by Maglioneet al
[20] and by Kleemannet al [16]. In these previous studies, the electric field dependence of
the dielectric constant has been fitted to a conventional series expansion in even powers of
the electric field, or to this conventional series plus a contribution of two different types
of independent polar cluster, calculated by using a Langevin-type approximation. As pointed
out in [16], the conventional powers series approach cannot describe accurately the semi-bell
shapedε(E) curves observed experimentally. On the other hand, the second approach has the
drawback of involving at least seven adjustable parameters, which may raise some questions
on the interpretation of the data. Moreover, in the two referred models, a strictly classical
point of view is adopted, which is clearly at variance with the dominance of the quantum
fluctuations in the suppression of the ferroelectric ordering, both in ST and in SCT below the
critical concentration [21].

A different point of view has been recently adopted to describe the linear and non-linear
dielectric behaviour of pure ST [8]. In order to treat the electric field dependence of the
susceptibility and to take into account the effects of quantum fluctuations, these authors
consider a transverse Ising Hamiltonian. In a mean-field approximation, this model reproduces
the Barrett formula for the linear susceptibility [21] and accounts reasonably well both for the
temperature and field dependence of the susceptibility in pure ST.

It is tempting to apply this unified description to the dielectric behaviour of SCT. However,
in this case, one must incorporate in the model the effects of disorder due to the random Ca
impurities, by considering that the interactions between the clusters have a random component.
For the particular case corresponding to a zero tunnelling field(� = 0), the problem has been
extensively studied and, in a mean-field approximation, leads to the Sherrington–Kirkpatrick
model [22] (S–K), which is known to be well adapted to the description of spin glasses.

In the first part of this paper we adopt the guidelines of the S–K model and, by considering
a non-zero tunnelling amplitude, deduce the general expressions for the electrical polarization
and for the Edwards–Anderson order parameter as functions of the temperature and field.
Then, in order to obtain analytical expressions for the electrical susceptibility, we consider the
solutions corresponding to high temperature limit and to the high tunnelling amplitude limit. In
the second part, we apply this latter approximation to the analysis of the linear and non-linear
dielectric constants of SCT. It is shown that the experimental data obtained in samples with low
Ca concentrations(x = 0.2 at.% andx = 0.3 at.%) can be consistently described by the model.
This analysis allows a calculation of the relevant parameters of each Ca concentration, namely
the number of clusters per unit of volume, the average dipole moment per cluster, the Curie
temperatureT0, the freezing temperatureTf and the tunnelling temperatureT1. The results
show that, for this low Ca concentrations, the quantum fluctuations stabilize the paraelectric
phase and prevent the onset of either a ferro- or a glass stable phase. Finally, in the third part,
some conclusions are drawn from this analysis and some speculations are made on the possible
onset of a ferro- or a glassy phase at higher Ca contents.

2. Theory

As referred to above, the easy axes of the polarization in SCT are the cubic [110] andb11̄0c
directions in the(001) plane. For an electric field applied along [100], these two directions
are energetically equivalent. We can therefore describe the polar states by effective up|+〉 or
down |−〉 states, depending on whether their [100] component of the polarization is parallel
or anti-parallel to the applied electric field.

Due to the high polarizability of the lattice, the local dipolar fields generated by the non-
central Ca ions are expected to break locally the tetragonal(D4h) symmetry of the paraelectric
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lattice and to induce local highly correlated ferro domains with aC2v orthorhombic symmetry.
Hence, for low calcium concentrations and for high enough temperatures, these polar clusters
are expected to interact very weakly with each other. The system thus behaves nearly like a
quantum ‘superparaelectric’.

In order to describe the dielectric response of the system, we firstly associate with each
polar cluster an effective quantum two-level system characterized by a certain Ising dipolar
momentη and a certain tunnelling energyA. In the presence of a local electric fieldE, the
Hamiltonian of a single cluster is then:

h =
[
ηE −A
−A −ηE

]
. (1)

This Hamiltonian has the following eigenvectors and eigenvalues:

|ψ+(z)〉 = cos

(
θ(z)

2

)
|+〉 − sin

(
θ(z)

2

)
|−〉 e+ = +

√
A2 + η2E2(z) (2a)

|ψ−(z)〉 = sin

(
θ(z)

2

)
|+〉 + cos

(
θ(z)

2

)
|−〉 e− = −

√
A2 + η2E2(z) (2b)

with

θ(z) = tan−1

(
− A

ηE(z)

)
.

The dipolar moment of each eigenstate is:

〈9+|D|9+〉 = −〈9−|D|9−〉 = η ηE√
A2 + η2E2

= η cos(θ). (3)

Note that a finite tunnelling integralA effectively reduces the magnitude of the dipolar moment
of the cluster.

The next step is to consider the interaction between random distributed clusters. One must
then consider a complete Hamiltonian that includes the coupling between the dipolar moments
of the different clusters:

H =
∑
i

hi +
1

2

∑
i

∑
j

Jij ηiηj . (4)

In this equation,hi represents the single-cluster Hamiltonian given by equation (1).
We adopt, in addition, a mean-field approximation, which is known to be quite satisfactory

above the Almeida–Thouless line [23], for systems with long range interactions. It seems
therefore reasonable to apply this approach to a system like SCT, where dipolar long range
interactions play an important part.

By adopting these guidelines we are led to the grounds of the Sherrington–Kirkpatrick
model for spin glasses. Note that, in this approximation, the coupling between dipoles affects
the value of the local electric field. As in the S–K model, one assumes that the distribution of
dipolar interactions is a Gaussian characterized by a certain average valueJ0 and a certain width
J1, which can be associated respectively with the constant sign and random sign components
of a local electrical fieldE(z), which is a function of a random variablez [22]:

E(z) = E + J0P + J1q
1/2z. (5)

In this equation,P is the electrical polarization andq the Edward–Anderson order parameter.
These quantities can be expressed as:

P = Nη√
2π

∫ +∞

−∞
e−(z

2/2) ηE(z)√
A2 + η2E2(z)

tanh

[√
A2 + η2E2(z)

kBT

]
dz (6)

q = η2

√
2π

∫ +∞

−∞
e−(z

2/2) η2E2(z)

A2 + η2E2(z)
tanh2

[√
A2 + η2E2(z)

kBT

]
dz. (7)
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Note that the set of equations (5)–(7) is similar but not equivalent to the one obtained previously
for proton glasses like RADP, where a random-bond transverse Ising model in a longitudinal
random field is adopted [24, 25].

Equations (5)–(7) must be solved numerically. However, it is possible to obtain analytical
solutions in the limits of high temperatures or high tunnelling frequencies.

2.1. High temperature limit (kB �
√
A2 + η2E2(z))

In this case one can take, as a first approximation:

tanh2

[√
A2 + η2E2(z)

kBT

]
≈
[
A2 + η2E2(z)

(kBT )2

]
+ · · · . (8)

By replacing (5) and (8) into (7) we can estimate the temperature and field dependence of the
order parameterq(T ,E) in the paraelectric phase:

q(T ,E) ≈ η4(E + J0P)
2

kB(T 2 − T 2
f )

(9)

whereTf = η2J1/kB represents the freezing temperature of the cluster gas.
By replacing (9) into (5) and (6) and taking into account the expansion tanh(x) ≈

x − 1
3x

3 + 2
15x

5 + · · · , we can obtain the following polynomial expansion for the electric
polarization:

P(T ,E) = εC1E

(T1/2) coth(T1/2T )− T0

−εC3E
3

3T 3

[
(T1/2) coth(T1/2T )

(T1/2) coth(T1/2T )− T0

]4 T 2 + 2T 2
f

T 2 − T 2
f

+ · · · (10)

where

C1 = Nη2

kBε0
C3 = Nη4

k3
Bε0

T0 = Nη2J0

kB
and T1 = 2A

kB
.

At high temperatures, the linear susceptibility follows the Barrett formula and its temperature
dependence is not affected by the random disorder(J1 6= 0). However, the non-linear
susceptibility exhibits a non-analytic behaviour atT = Tf . Note that, in the classical limit
(T1 → 0), one obtains the Sherrington–Kirkpatrick results for high temperatures:χ1(T ,E)

follows a Curie–Weiss law and

χ3(T ,E) = CT
[

1

T − T0

]4 T 2 + 2T 2
f

T 2 − T 2
f

.

2.2. High tunnelling frequencies (ηE(z)/A� 1)

If the tunnelling energyA = kBT1 dominates over the local Zeeman energy (i.e. ifT1 >

2T0, T1 > 2Tf and the applied electric fields are small), it is possible to expand the hyperbolic
tangent as:

tanh

[√
A2 + η2E2(z)

kBT

]
= tanh

[
A

kBT

(
1 +

η2E2(z)

A2

)1/2]
≈ tanh

[
T1

2T

(
1 +

2η2E2(z)

k2
BT

2
1

+ · · ·
)]

≈ tanh

[
T1

2T

]
+
η2E2(z)

kBT1T
sech2

[
T1

2T

]
+ · · · (11)
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and the other integrand functions as:

1√
A2 + η2E2(z)

≈ 2

kBT1

(
1− 2η2E2(z)

k2
BT

2
1

+ · · ·
)

(12a)

1

A2 + η2E2(z)
≈
(

2

kBT1

)2(
1− 4η2E2(z)

k2
BT

2
1

+ · · ·
)
. (12b)

It is then easy to show that, in this approximation and up to terms inE2, the Edwards–Anderson
order parameterq(T ,E) and the electric polarizationP(T ,E) can be written respectively as:

q(T ,E) ≈ (4η4/kBT
2
1 ) tanh2(T1/2T )[E + (T0/ε0C1)P (T ,E)]2

1− 4(Tf /T1)2 tanh2(T1/2T )
(13a)

and

P(T ,E) ≈ E (1)E − E (3)E3 + · · · = ε0C1

(T1/2) coth(T1/2T )− T0
E

−ε0D3

[
4 tanh(T1/2T )− 2(T1/T ) sech2(T1/2T )

(1− 2(T0/T1) tanh(T1/2T ))4

]
×
[
T 2

1 + 8T 2
f tanh2(T1/2T )

T 2
1 − 4T 2

f tanh2(T1/2T )

]
E3 + · · · (13b)

where

D3 = Nη4

ε0k
3
BT

3
1

.

The dominance of the quantum fluctuations prevents not only the divergence of the linear
susceptibility (according to the Barrett formula ifT1 > 2T0) but also suppress the divergence
of the non-linear susceptibility asT → Tf if T1 > 2Tf . Thus, in the limit considered, both
the ferro and the glass phases are destabilized by the quantum fluctuations.

The model discussed incorporates the basic ingredients to describe the competitions
between the ferroelectric, the paraelectric and the cluster glass phases that may occur in
disordered systems like SCT. In order to generate a phase sequence for an arbitrary set of
parametersT0, T1 andTf , the model must be solved numerically.

The analysis of the dielectric behaviour of ST shows that the quantum fluctuations are
clearly dominant and stabilize the paraelectric phase. One can therefore expect that in low
Ca doped SCT the high tunnelling frequency limit discussed above can be applied. In the
next part we will discuss the experimental results obtained in low doped Ca SCT by using
equations (13a) and (13b).

3. Results and discussion

The dielectric constant was measured as a function of temperature and electric field with an
HP 4192ALCR-meter. The SCT samples, cut as parallel plates perpendicular to the [100]
cubic direction, had typical dimensions of 2.5× 2.5× 0.25 mm3 and the major faces were
electroded by gold vapour deposition. The electric field dependence of the dielectric constant
was measured with a four-probe method and at constant temperature, the temperature stability
being better than 0.1 K. In the measurements, the amplitude of the static electric field was
always smaller than 200 V cm−1 because higher fields are expected to induce a ferroelectric
phase, even in the pure compound [8]. The data were registered for increasing and decreasing
electric fields. In the temperature range considered no hysteresis was found. The temperature
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(a)

(b)

Figure 1. (a) Temperature dependence of the real part of the linear dielectric constant measured for
x = 0.002 (curve (a)) and forx = 0.003 (curve (b)). (b) Temperature dependence of the imaginary
part of the linear dielectric constant measured forx = 0.002 (curve (a)) and forx = 0.003
(curve (b)).

rate was always smaller than 0.3 K min−1. No special care was taken to obtain a monodomain
crystal in the tetragonal phase(T < Tc ≈ 105 K).

Figure 1 shows the temperature dependence of the realε(T ) and imaginaryε2(T ) parts
of the linear dielectric constant measured in thex = 0.002 (curves (a)) andx = 0.003 (curves
(b)) samples, at a frequency of 10 kHz. As in pure ST we observe that, in both samples and
for this frequency,ε(T ) rises monotonically as the temperature decreases down to 9 K. The
magnitude of the dielectric constant strongly increases with the Ca content. The imaginary
part displays a clear maximum at aboutTm = 10 K for x = 0.002 and atTm = 15 K for
x = 0.003. Similar dielectric loss peaks near 10 K are also observed in pure ST [8] as well as
in other similar perovskites like KTa1−xNbxO3 [26]. The origin of these anomalies has been
ascribed either to solitonic excitations between mutually tilted domains [8] or to polaronic
excitations [26]. Note that in the special case of ST the polaronic excitations occur within the
‘coherent quantum phase’ and are sensitive to quantum fluctuations. Accordingly, the concept
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(a)

(b)

Figure 2. (a) The dielectric constantε1(T ) measured in anx = 0.002 sample, using a constant
ac field(20 V cm−1) and different frequencies, in the range 100 Hz–1.5 kHz. (b) The dielectric
constantε1(T )measured in anx = 0.002 sample, using a constant frequency (10 kHz) and different
ac fields (a—20 V cm−1, b—4 V cm−1 and c—2 V cm−1).

of a quantum polaron has been introduced and related to the loss anomalies observed in SC
and SCT at low temperatures [27].

As the temperature decreases towardsTm one observes that the dielectric response at
zero bias field becomes dependent on the measuring parameters adopted. This observation is
illustrated in figure 2 for thex = 0.002 samples. Figure 2(a) displaysε1(T )measured with an
ac field of 20 V cm−1 and different frequencies ranging from 100 Hz to 1.5 kHz. As can be seen,
a clear frequency dispersion is observed below a temperatureT ∗ > Tm. Figure 2(b) shows
ε1(T )measured in the same sample at a constant frequency of 10 kHz but with different ac fields
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(20 V cm−1 (a), 4 V cm−1 (b) and 2 V cm−1 (c)), showing that the dielectric response becomes
dependent on the amplitude of the measuring field. At low measuring fields (e.g. 2 V cm−1)
a maximum inε1(T ) is observed. The temperature corresponding to this maximum depends
both on the amplitude and frequency of the measuring field.

In order to estimate the mean-field parameters that characterize the dielectric response of
the samples we must focus on a temperature range where its dependence on the measuring
parameters can be neglected. For the frequencies and ac fields scanned (100 Hz–100 kHz,
2–20 V cm−1) this region corresponds to temperatures aboveT ∗ ≈ 11 K (x = 0.002) and
T ∗ ≈ 16 K (x = 0.003).

Figure 3. (a) Fit ofε1(T )measured forx = 0.002 (10 kHz and 20 V cm−1) to the Barrett formula
(C1 = 139 500 K; T1 = 68 K; T0 = 32 K). (b) Fit of ε1(T )measured forx = 0.003 (10 kHz and
20 V cm−1) to the Barrett formula(C1 = 234 950 K; T1 = 72 K; T0 = 34 K).

Figures 3 show the temperature dependence ofε1(T ) in the temperature range above
T ∗ for the two compositions in analysis. In the same figures the fit of the data to the Barrett
formula is shown. As can be seen, and in agreement with previous results [28], the temperature
dependence ofε1(T ) can be well described by the Barrett equation:

ε1(T ) ≈ C1

(T1/2) coth(T1/2T )− T0
.

The parameters fitted to the experimental curves areC1 = 139 500 K,T0 = 32 K andT1 = 68 K
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for x = 0.002 andC1 = 234 950 K,T0 = 34 K andT1 = 72 K for x = 0.003. As in these
compositionsT1 > 2T0, the linear dielectric constant does not diverge at a finite temperature
and tends to saturate as the temperature decreases: the quantum fluctuations suppress the
ferroelectric order. Moreover the high values fitted toT1 show that, in both samples, the
quantum fluctuations are dominant over the cluster interactions and over the thermal energy in
a temperature region where dielectric non-linearities are observed. This fact suggests that the
high tunnelling energy limit, described in the previous section, may be used in order to describe
also, in a simple way, the electric field dependence of the dielectric response (see equation (13b).

Let us first note that, as previously reported [16], the experimentalε(E) curves display
a semi-bell-shape that cannot be accurately described by using a conventionalε versusE
polynomial expansion involving merely even powers of the electric field. This means that
the high tunnelling frequency limit, giving rise to such a polynomialε(E) expansion, is
not expected to describe this field dependence for arbitrarily high fields. In fact, this is not
surprising as the high frequency tunnelling limit itself fails for high fields (asT0 andTf are
increased by the applied field). One can however apply such a limit if the analysis is restricted
to the low field region of theε(E) curves for which higher order non-linearities can be neglected
andε(E) varies linearly withE2.

Figure 4 displays the isothermal dependence ofε(T ) on the square of the applied dc
fieldE2. According to the ideas referred above, the lower order non-linear dielectric constant
ε
(3)
1 (T ) can be estimated by calculating the slope of the experimental curvesε1(E

2) at the limit
E → 0. The non-linear dielectric constant obtained by this method is shown in figure 5(a)
as a function of temperature. Note that this temperature dependence can be fitted to the
one predicted in equation (13b), by using only two adjustable parametersTf andD3. The
values of the two parameters fitted to the two compositions areD3 = 2× 10−10 m2 V−2 and
Tf = 29.5 K (x = 0.002) andD3 = 1.3× 10−10 m2 V−2 andTf = 36 K (x = 0.003). The
extrapolation of the fitted curves towards lower temperatures (figures 5(b) and (c)) suggests
that the non-linear dielectric constants saturate, in both samples, as the temperature decreases.
This saturation seems to indicate that an eventual glass phase is effectively suppressed by the
quantum fluctuations.

Table 1.

C1 [K] D3 [m2 V−2] T1 [K] T0 [K] Tf [K] N [m−3] η [eA]

x = 0.002 139 500 1.0× 10−8 68 32 29 1.8× 1026 19
x = 0.003 234 950 1.4× 10−8 72 34 36 4.1× 1026 17

Table 1 summarizes the values of the parametersC1,D3, T0, T1 andTf fitted toε1(T ) and
ε
(3)
1 . From these parameters we can estimate the density of clustersN (m−3) and the average

dipolar moment per clusterη (eA) (see table 1). In nominally pure ST, Hembergeret al [8]
foundN = 3.6×1026 m−3 andη = 12eA. Note that the values for the pure compound result
from measurements ofε1(T ,E) at a frequency of 85 kHz and over a wide range of temperatures
(5–100 K), as well as from the assumption ofTf = 0 implicit in the model adopted by the
authors.

As pure ST has a density of Ti4+ ions of the order ofN0 = 1.6× 1028 m−3, we can also
estimate the average size of a cluster. This value is of about 40 unit cells inx = 0.003 and
of about 90 unit cells inx = 0.002, values that correspond to the volume of a sphere with a
radius of the order of 1 nm. At the same time, the average dipolar moment per unit cell keeps
a value of the order of 0.2–0.3 eA.

In conclusion, the results described above indicate that, for the low amounts of Ca con-
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Figure 4. Isothermalε1(E
2) curves measured at different temperatures forx = 0.002 (figure 4(a))

and forx = 0.003 (figure 4(b)).

sidered, the system of the polar nano-clusters may be described as a quantum paraelectric, as
T1 > 2T0 andT1 > 2Tf . However, the rapid increase ofTf suggests that for higher concen-
trations of Ca random sign interaction between cluster may dominate and a glass phase may
be stabilized. In fact, the critical compositionxc above which a glass phase may be stabilized
seems very close tox ≈ 0.003, as the values fitted to this composition indicate thatT1 ≈ 2Tf .

4. Final remarks

The description of the polar clusters generated by the Ca impurities in SCT as a weakly
interacting quantum two-level system allows a simple analysis of the temperature and electric
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Figure 5. (a) First order non-linear dielectric constants deduced from the experimental curves
ε1(E

2) for x = 0.002 andx = 0.003. The lines shown correspond to the fits of the data to the
non-linear term in equation (13). (b) Extrapolation towards lower temperatures of curve adjusted
to the non-linear dielectric constant forx = 0.002. (c) Extrapolation towards lower temperatures
of curve adjusted to the non-linear dielectric constant forx = 0.003.

field dependence of the dielectric constant measured in samples with low Ca concentrations.
In the two compositions studied, the analysis of the experimental data suggests that quantum
fluctuations stabilize the paraelectric phase and prevent a divergence of the linear and non-
linear dielectric constants. The temperatureTf increases strongly with the Ca content and
may give rise to a divergence of the non-linear susceptibility at a higher Ca concentration. Of
course, the application of the model tox > xc would require a numerical fit of equations (7)
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and (8) to the experimental data, rather than the use of the simplified equation (13). This
work is being carried out presently and may confirm the existence of a glass phase in SCT for
intermediate Ca contents.
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